Ieee Mb White



Aaron Franklin

Duke University, USA
Presenter Bio

Dr. Aaron Franklin received his Ph.D. in Electrical Engineering from Purdue University in 2008 and then spent six years on the research staff at the IBM T. J. Watson Research Center in Yorktown Heights, NY. In 2014, he joined the faculty at Duke University where his group has three primary research thrusts: 1) nanomaterials in high-performance nanoelectronic devices, 2) nanomaterial inks for low-cost printed electronics, and 3) harnessing nanomaterial sensitivity in biomedical sensing systems. He is most widely known for his work on low-dimensional nanoelectronics with specific emphasis on carbon nanotube (CNT) transistors, including device scaling, transport studies, and advanced integration approaches. Sponsored research in the Franklin lab includes projects involving high-performance transistors, printed electronics, thin-film transistors, and biomedical assays. In addition to leading a successful scientific research group, Dr. Franklin has been actively involved in the translation of inventions out of the lab, holding more than 50 issued patents and being engaged in two start-up companies.

Abstract: Aerosol jet printing with nanomaterial-based inks: A path towards recyclable, print-in-place electronics
For decades we’ve been hearing about the promise of printing electronics directly onto any surface. However, despite significant progress in the development of inks and printing processes, reports on fully, direct-write printed electronics continue to rely on excessive thermal treatments and/or fabrication processes that are external from the printer. In this tutorial, background information on aerosol jet printing – a versatile, direct-write printing technique – will be provided. The use of nanomaterial suspensions as electronic inks will also be reviewed, including carbon nanotubes (CNTs), graphene, and hexagonal boron nitride (hBN). Then, recent progress towards print-in-place electronics will be discussed; print-in-place involves loading a substrate into a printer, printing all needed layers, then removing the substrate with electronic devices immediately ready to test. To achieve this, significant advancements were made to minimize the intermixing of printed layers, drive down sintering temperature, and achieve sufficient thin-film electrical properties. It will be shown how inks from nanoscale materials have the potential to overcome some of the major hurdles for printed devices, particularly in yielding direct-printed thin films meeting target electrical performance, air stability, and process compatibility. In addition, three attractive options for direct-write printed insulating inks will be discussed: 2D hBN, ion gel, and crystalline nanocellulose. The appropriate design of these nanomaterial-based inks can enable the printing of fully recyclable electronics, where the constituent nanomaterials can be reclaimed and reused after initial printing and use in electronic devices. Overall, this tutorial should provide: 1) background for those less familiar with aerosol jet printing and nanomaterial-based inks; and 2) recent progress on print-in-place and recyclable electronics, from transistors to diverse sensors on virtually any substrate.

IEEE websites place cookies on your device to give you the best user experience. By using our websites, you agree to the placement of these cookies. To learn more, read our Privacy Policy.